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* N.B.: 2018 is 40" Anniversary of Hasegawa-Mima
Classic paper - Inspired many cross-disciplinary

bridges...

e Special Thanks:

Prof. Yoshi-Yuki Hayashi, co-organizer



Outline

 Inventory of papers
« Highlights:
— Flows
— Magnetic Self-Organization

— Turbulence dynamics

— Assorted Topics

« What did we learn? — Discussions

— Plasma-GFD Interactions - Future?
— Magnetic Self-Organization and Dynamo — Status?

— New Directions in Nonlinear Dynamics in Plasma?



Inventory



Inventory

* 4 Plenary + 30 Submitted Papers

* A) Flow Self-Organization and Transport (GFD and Plasmas)

— Structure Formation: Yoden, Niino, Takehiro, Arakawa, Yim, Kosuga,

Yamada
— Momentum Transport: M. Yamada, Hayashi, Ko, Cao, Aiki
— Turbulence and Transport: Lathrop, Guo, Kanik, Noh, Kawamori,
lwayama
» Discussion: Directions for future CD interaction of plasma and

GFD communities?!



Inventory, cont’d

 B) Magnetic Self-Organization: Dynamo, Relaxation,
Reconnection (Structure Formation <—-> Magnetic Fields)
— Relaxation: Cappello, Chen, Zhang, Singh
— Dynamo: Tobias, Deguchi, Hori
— Reconnection and Islands: Xiao, Sydora, Jiang

* Discussion: Magnetic Self-Organization and Dynamo:

Current Status and Role of Boundary



Inventory, cont’d

* Assorted Topics: Mostly Laser-Plasma

Huang, Wang, Shiroto, Miyoshi, Liu

e Discussion: New Directions in Nonlinear Plasma Dynamics!?



Highlights

- Flow



The cross-disciplinary session...

- Analogy between GFD & tokamak plasmas
- Waves..
- Vortices...
- Staircasing
* Interactions with mean flows )= ‘
- Quasi two-dimensionality o, e v o
- Mixing of Lagrangian conserved quantities...
- Transport barriers
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« Can we break this analogy?



Hayashi: Turbulence, waves,
momentum transfer in GFD

e Model reduction in GFD from Richardson, 1922

— Numerical weather prediction with primitive computers - forced

reduction, like for MHD - “mission orientation”

e Theoretical structure
a) Stability theorems: Rayleigh, Lin, Fjorthoft
b) Equations/models: Charney > QG - H-M
 Waves (Rossby), Coherent structure - vortex
« Potential vorticity dqg/dt =0
— Conserved phase space density (ala’ Vlasov equation)

— Dual cascade, inverse energy (Kraichnan)



Hayashi: Turbulence, waves,
momentum transfer in GFD, cont’d

C)
» Weakly nonlinear wave theory

» Pseudo-momentum, wave-flow interaction = jets! > u(® = —¢'2/2Q,,

d) Problematic

» Turbulence
» Convection — multi-scale, break PV cons
« Scale selection
— Staircases
— “Wave-flow jigsaw puzzles”
— Emergent: Rhines - Major current focus

e« Jet mergers T —

— but on exp.

— time scale




Tornadoes: Their Structure, Genesis Mechanism and Environment
Hiroshi Niino (Atmosphere and Ocean Research Institute, The University of Tokyo)

* Our current understanding of tornadoes are reviewed, and future subjects are discussed.
* Tsukuba, Japan F3 tornado on 6 May 2012 was successfully reproduced by a quadruply-nested 32
member ensemble simulation. An ensemble sensitivity analysis shows that the origins of rotation of
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Three-dimensional structure of the simulated tornadic vortex. Red
translucent and opaque isosurfaces show vertical vorticities of 0.2 and 0.6 s1,
respectively, gray isosurfaces cloud water mixing ratio of 1 g/kg, color shading
temperature (K) at 1.5 m AGL, black and white arrows horizontal winds for
less and larger than 30 m/s at 30 m AGL, respectively [Yokota et al., 2018,
Monthly Weather Review (MWR)].

tornadoes vary from member to
member, and the strength of
tornado is highly correlated with
that of low-level mesocyclone.

* The multiple-vortex structure of
the same tornado was successfully
reproduced by a simulation with
10m horizontal mesh [Mashiko and
Niino, SOLA, 2017].

* It is important to recognize a
hierarchy of atmospheric
disturbances that causes tornadoes,
and Storm-Relative Environmental
Helicity and Entraining Convective
Available Potential Energy of the
environment seem to be important
parameters to assess a potential risk
of tornadoes [Sueki and Niino,
GRL,2016; Tochimoto and Niino,
MWR, 2016, 2018 submitted].



Tornado Genesis, cont’d

o Super-cell > mesocyclone - tornado

\

stochastic boundary process

* Ingredients:

— SREH - Storm Relative Environmental Helicity

— SREH=—["k- (TJ’—E’) x% dz  updrafts

— CAPE - convective available potential energy

= FOM : (SREH)(CAPE) - basis for tornado warning



Lathrop: Vortex Dynamics and
Reconnection in Quantum Fluids

* Discussed: ideal MHD, ideal fluids, quantum fluids

e Quantum Fluid:

— Repulsive interaction NLS

— Waves ala’ Kelvin w ~ k2

e Singular Dynamics
— Vortex line reconnection (via acoustics) Filament helical
dynamics evident
- V() ~ 1/(tg — )2

— Pdf V ~ 1/V3/2 5 tail, akin particle acceleration



vé [km/s]

Norman Cao: Reversals, Hysteresis
and Turbulence Populations

Hysteresis Observed Robustly in Multiple
Plasma Conditions

* Under different plasma conditions, transition appears to occur when
the normalized collisionality crosses v* = Ye€ ~ 0.4 [Rice NF 2013]

Wpe
» Suggests the link with trapped electron modes
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Norman Cao: Reversals, Hysteresis
and Turbulence Populations

Subdominant Mode Transition Found to be
Consistent with Observed Transport

* In order to satisfy particle flux

QL Weights [GB units] usosos07 - constraint, two solutions exist:
SOC-like LOC-like

la I I 1 Active Mode ITG (lb) ITG (la, 1b)

' Families ETG (Il1) TEM-like (I1)

f ETG (I1)
Particle Flux Balance within Ib la balances Il
Balance

* Leading to qualitatively different
transport dependencies

Electron Heat ETG dominates TEM and ETG
Transport

Torque Balance ITG dominates TEM and ITG

APS-DPP 2018




Norman Cao: Reversals, Hysteresis
and Turbulence Populations

Conclusions and Future Work

* Experiments show changes in toroidal rotation and turbulent residual
stress despite nearly identical density and temperature profiles

* A change in dominant linear instability alone is not sufficient to explain the
LOC/SOC transition

* Quasilinear modelling shows that a subdominant ITG/TEM transition
is consistent with the observed transport

* Reminiscent of a “population collapse” or quenching of turbulent TEM-like
mode intensity

* Future work: Compare predictions against global nonlinear
simulation, and identify if changes are consistent with fluctuations
measured in experiment



Kosuga: Pattern Competition

e Zonal Flow vs Streamer Competition

* Perp-Parallel Synergy

=» ‘General Circulation’



Kosuga: Pattern Competition
Highlights of the talk

 Difference in the driving of Turb-/"ﬁ
zonal flows/Streamers? ! N
Kosuga, et al., Phys. Plasmas 25 100701 (2018) l\ \ ‘\ _
Conventional: shearing feedback >

-> Relevance of density mod. for streamers

v) (r)
* Role of 3 direction: parallel flows? /th
A A

Kosuga, Phys. Plasmas 24 122305 (2017) v

Recent developments on parallel flows

Interplay between perp. and parallel flows /fé\\




Three dimensional structure of streamer in drift wave fluctuations (T. Yamada)

3D structures of mediator, carrier waves, and streamer have been clarified
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Tobias: Weak Magnetic Field Effects
on GFD

e Application: Solar Tachocline, Proto-Planets,

Rapidly Rotating Stars...



Conclusions/Future Work

» The analogy between stratified, rotating geophysical
flows and plasma flows is worth exploring

» Even a small amount of large scale magnetic field can
drastically change the physics of the strictly geophysical
problem

« Breaks PV conservation
+ Switches off jets
 Can disrupt vortices

« Subtle Lagrangian effects (cf Vainshtein & Cattaneo 1991)

- Does this carry across to more elaborate geophysical
models

» Shallow water MHD (Cho & Staehling)

* MHD thin shell primitive equations (Miesch 2007,
McCabe & Tobias in preparation)



Rotation and momentum transport in magnetic confinec

plasmas by Won-Ha Ko (NFRI)

* The rotation development is observed during sawtooth [999-99__ #17236 ()]
and toroidal rotation has quite unique pedestal in KSTAR - EAN
which is advantage for rotation and momentum transport ~100p

l}(sms Resonant 6B reduced pedestal widths of rotation
~5cm >3 cm)i in co- -NBI and ctr-NBI decreased

?atlon pedestal (A%‘; ~5cm = 2 cm ) in w/o resonant 6B

whlle those of Ti (4"“~ 2cm) are constant in any case

* A clear disparity of the core toroidal rotation in between
co-NBI and counter-NBI heated H-mode plasmas gave us a
clue of intrinsic rotation. The first prediction and
estimation of core intrinsic flows in spite of the strong V (0)
external momentum input is reported in KSTAR. -150r ' -

V [km/s]

* Whole toroidal rotation close to zero but edge has small
rotation which may be from intrinsic rotation despite the
RMPs strongly attack from edge region.

* Observation of core and edge rotation is important role in

understanding physical mechanism and its generation of | L .
intrinsic torque u #17236 (2.3T, 0. 7*A w/o RMP

-
NFRI o OOSAWTOTIIP()[h:ISIMA] KETAR 1




K. Hori: B-field Effects on Waves in GFD

Summary

* The excitation of rotating MHD waves is supported by
geo-/Jovian dynamo simulations:

— axisymmetric, torsional Alfven waves

* propagating in cylindrical radius with timescales of 21 m,,*

— 4-6 years in Earth’s core; possibly = 10 years in Jupiter’s metallic H-He region

* reflecting at an interface between the metallic-molecular regions

— nonaxisymmetric, slow magnetic Rossby waves

 crests/troughs travelling retrogradely with timescales of 2n
| oy?/@g ]t with respect to mean zonal flows

— on timescales of O(10%2 yrs) in Earth’s core

* nonlinear Lorentz terms play a role in steepening waveforms

* Detecting these wave properties could enable us to infer
physical quantities of the planetary dynamos



Global stability of pancake vortices in stratified-rotating fluids
CD118, Eunok Yim

* Motivation * Stability map
- Mediterranean eddy
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Thermal convection and induced mean zonal
flows in rotating spherical shells (S. Takehiro)
Summary of weak nonlinear theory

P, @ lLarge P, :
' meridional
circulation

Y

equatorial
sub-rotation

Small P, :

lngk o
Reynolds stress
4
equatorial
super-rotation

Meridional

Reynolds
stress

Reynolds
stress

S. Takehiro (RIMS, Kyoto Univ.) Convection and mean zonal flows November 12, 2018 1/1



CD-116: 2018.11.14 Wed 15:15-15:40
Towards a seamlessly diagnosable expression for the energy flux associated with

both equatorial and mid-latitude waves Nori Aiki (ISEE, Nagoya Univ., Japan)

A theoretical gap in traditional formulation

... challenge for tropical-extratropical interaction analysis ' _ ' '
without relying on Fourier analysisnor Ray theory

How to estimate group-velocity-based energy flux from model output for waves at all latitudes?

New inversion of Ertel’s potential vorticity

VQQO . (f/C)QSO o (3/62)907% _ q/ ... auto-focus for all gravity and planetary waves at all latitudes
OE +V - <<31/p’ + (p'p/2+ u;tgp/ﬁ)%,v’—p’ —(P'e/2 + Uy 0/ B)z)) =0

=cy4 E Aiki et al. (2017 Progress of Earth & Planetary Science)
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A future direction of Geophysical Fluid Dynamics
The life-cycle analysis of wave energy in the global atmosphere and ocean (i.e. wave tracing based on group velocity) ...
... for clarifying the mechanism of tropical-extratropical interaction associated with El Nino / La Nina




Highlights

- Magnetic



Magnetic Self-Organization

« Taylor Relaxation — rooted in dual cascade of

energy, magnetic helicity — is over-arching theme

for macroscopics
e Microscopic mechanism less clear

e Important ‘exceptions’, ‘unusual cases’ emerging



RFP self-organization Experimental overview

RFP < saturated KINKED plasma .

required in RFX-mod

for Ip above ~ 1 MA

CLEAN MODE CONTROL
and/or
NON CONVENTIONAL
SCENARIOS (PPCD-OPCD)

—~ 10¢ —~ 10
E s MH_ E & Feedback coils system
26 1 * 6 Typical operation:
a4t ol Ip ~1.7MA
2 Te upto 1.2 keV
°L1 5 9 13 17ﬁ 5% 5 9 13 17n | |

MHD spectrum: resistive kink-tearing modes




RFP helical self-organization: structures formation

RFX -mod

Formation of e-Transport Barriers
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Puiatti, Valisa, Agostini et al NF 2011

Carraro, Auriemma, Barbui et al EPS 2014

Menmuir, Carraro, Alfier et al PPCF 2010
TESPEL experiments (RFX-mod2 )

planned 1n collaboration with NIFS
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Summary

Helical self-organization characterizes the Reversed Field Pinch:

» Experiments show formation of thermal and impurity particle barriers,

» 3D MHD shows magnetic chaos healing and hidden coherent structures

(Lagrangian Coherent Structures LCS),

* New global helical regimes stimulated by seed Magnetic Pertubations,
v" Characterized by tunable amplitude and frequency of «sawtoothing»,
v" Suggested by MHD and obtained in RFX-mod,
v" 3DMHD Non resonant modes provide more efficient chaos healing

Await for further experiments in RFX-mod2 from 2020

... we expect more effective feedback coils actions



M. Zhang: Solar Magnetic Helicity
‘Conveyor Belt’

e Helicity Limit > CME



In the corona:

1. Hemispheric helicity

sign rule

(Image credit: A. Pevtsov)

2. Berger (1984)’s

conservation law

=> Magnetic helicity is accumulating

in the corona !



Concluding Remarks

1. Hemispheric helicity sign rule is observed on the photosphere.
* The rule shows solar cycle variation in sunspots.
 Same tendency found in dynamo simulations.
2. The accumulation of magnetic helicity in the corona
* Give rise to flux rope formation in the corona.
* Result in CME as a natural product of coronal evolution.
* Helicity upbound depends on boundary flux distribution.
* Central flux rope becomes kink unstable.
3. When helicity is dumped into the interplanetary space

* Parker-spiral-like structures will form.
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Magnetic reconnection in the solar corona is self-
organized because of helicity conservation.

P F.

» Solar eruptions with 8 orders of dynamic range
present a power-law distribution.




Solar Activity as SOC

— Magnetic Helicity — Conserved order parameter

— (size)‘“,r‘ﬁ distributions

wait
Flare
— Plasmoid ejection L ¢
Goal: X-pt height

— Prediction of large events — space weather

N.B. Lathrop — exploit solar surface visualizations



Intrinsic parallel current generation from ETG turbulence
in a shearless cylindrical plasma

Intrinsic current generation by residual current flux via k| sysmmetry breaking in electron
temperature gradient turbulence is well known in sheared magnetic system like tokamaks. However

this effect vanishes when magentic shear s goes to zero as <Ic||> — kys [ dxzx|p 2

2D Spectral asymmetry
[‘I’est current shear] wikyk.) # wl(—kyk.)
) 54" ) ﬁ wlkyky) # y(—kyk:)
|62 (kyks) # ||* (—kyk:)

Current amplification
in ETG turbulence

Cﬁesidual flux § )

Intrinsic n:urrent\+ve l
feedback on j j* {Negative residual diffusioj

l\\_ ,U-‘i‘l‘:“ = 0

Test current shear asymmetrizes the growth and frequency in kyk, space.

ky k. symmetry breaking converts the residual flux into diffusive flux with a -ve residual
diffusivity.

® When the negative residual diffusity exceeds the ambient turbulent positive diffusivity the
test axial current shear gets unstable



Highlights

- Turbulence Dynamics



Turbulence Dynamics During Relaxation

* Reviews aspects of turbulence relevant to

relaxation, self-organization

e Aspects of turbulence ubiquitous in all papers in

CD session



Influence of magnetic island on V, and 11,

ctety T R B L IR R E
06! TT ™ [TT T [T I [T T[T ITT[TTTTy 0- --------- i. ___________ ( =
s ; A ,L
2 ] -0.5F 3
< — electron
o 05 Kzl . 3
- 1 = diamagnetic
e e = -1F direction 3
=it g ; o
9. : T A5
[
N _2 -
-~ '25 2
N e B B B e e e e e e
ST | e —=0.05F
R=175¢m . '5_
(Inner boundary) E ?E‘;
¥ - A - —~
ST SR | ERCHI e i G i i
. 5 O = S L &
o V,,V, and, are modulated by s mz-\':/\/\/v\/ 0.05 ]
the rotation of island. % 008 | | \/WV 3 g
1297 1298 1299 1300 1301 175 180 185 190

v' Flow shear formed at boundary of island. {(ms) R (em)

v' i, reduced inside island while enhanced at island boundary, consistent with gradient-driven turbulence.

Open issue: which one plays a more important role in regulating turbulence at the
island boundary? E x B flow shear or VT ,?



Related:

 Z.B. Guo — Relaxation in 3 wave coupling

— Phase modulation modifies ‘Poinsot Construction’ for 3 wave phase

space
— Study of trajectories for ‘force free’ case — 1 wave A = const.

* Y. Noh — Turbulence Iin particle laden flows

— Schmolochowski model for aerosol accumulation

— Turbulence effects on interaction kernel



Assorted



Summal‘y [Fujimoto, GRL, in press]

We have proposed a new theoretical model connecting the
observed flow jets (i.e., BBFs) and collisionless reconnection
by means of large-scale AMR-PIC.

arising in the turbulent current
layer around the x-line is a key to generate 3D outflow jets.

(with A~20c/o,;) determines
the cross-tail scale of the flux lopes and, therefore, the 3D
reconnection jets.

® The electron dynamics plays an important role in controlling
the “MHD-scale” process.

Cross-Disciplinary (CD-6), AAPPS-DPP Conference,
Kanazawa, Japan, Nov. 16, 2018




@ Summary of CD-05, Takahiro Miyoshi

O The QGP, the extreme state of matter, Is created In
the high-energy heavy ion collision experiments

O However, the whole space-time evolution of the
high-energy heavy ion collision is very complicated

O Collective dynamics of the quark matters has not
been well understood yet

O In this talk, we discuss that plasma physics can
contribute to the understanding of the physical
processes of the high-energy heavy ion collision

i’ 3

. chr -

i mes = AL T S0 T
]

m Collisionless "glasma”
m Relativistic MHD -

. 0.0 0.25 gﬁssice 0.75 1.0
m Numerical methods Colored Particle. In-Cell (CPIC)




What did we learn?



Discussion I: 40 years after Hasegawa-Mima
Future Directions for Plasma (MFE Theory) — GFD
Interactions

e Leaders: Diamond, Hayashi
« Homogenization vs Layering (Staircase)
— Prandtl, Batchelor:
=) Vg - 0
* PV homogenized

 Mechanism: Shear dispersion t ~ Q Re/3

Forward enstrophy cascade 1
— Phillips, Mcintyre (+ many color pics): \‘
L

* Key: Scale selection? = - Cahn-Hilliard models !?
Physics of bistability? - Mergers




Discussion I: 40 years after Hasegawa-Mima
Future Directions for Plasma (MFE Theory) — GFD
Interactions

» Mesoscopic Pattern Competition
— Eddy (streamer) vs Zonal flow — nonlinear evolution
— Zonal flow scale:
» Screening, neoclassical, nonlinear
- Plasma

 Mergers - GFD, Difference observation of mergers?
« “General Circulation” states and transitions
— GFD: Jets + Hadley flow states, variability

symmetry  asymmetric

— Tokamaks:

| v,
« Symmetry breaking; ( m) radial force balance

Ve (1)
.V, Vgstates 1B ¢



Discussion I: 40 years after Hasegawa-Mima
Future Directions for Plasma (MFE Theory) — GFD
Interactions

 Boundary Layers, Dynamics
— LH Transition, Pedestal — MFE

— Western Boundary Layer Yoden (plenary) = QBO € -> LCO: LH-transition

* Gulf Stream Zheng Yan (APS invited 2018): counter propagating waves

e Kuroshio in LH-transition

e Multi-Scale Problem
— ETG + ITG/DW
— DW + AE
— GFD + Micro-sources (Clouds)
* Microscopic Boundary Structures
— Blobs, filaments — MFE

— Tornados — GFD



Discussion I: 40 years after Hasegawa-Mima
Future Directions for Plasma (MFE Theory) — GFD
Interactions

» Use of machine learning to deduce effective reduced models (Lathrop)
c.f. Recent work by Ott group for Kuramoto-Sivashinsky system

=» Can these lead to understanding?




Discussion Il: Magnetic Self-Organization
and Dynamo: Current Status, and Role of
Boundary Effects

Leaders: P. Chen, Cappello, M. Zhang
Need improve remote measurement of magnetic helicity

Footprint of convection zone structure on magnetics

observed \
granulation \

distribution

Magnetic helicity flux
— transport physics ?!
— J, avalanches — RFP

Inverse helicity cascade — fundamental !?



Discussion Ill: New Directions in Our Approach to
Nonlinear Plasma Dynamics « Leaders: Z.B. Guo, Kosuga

Nonlinear Phase Dynamics

1. What’s nonlinear phase dynamics, why it 1s important?
In linear&quasilinear phase dynamics
Ox, 1) = — iwt + ikx with |dnw| < |@w| and |dlnk| < |k|,
So there exists time&space scale separation and hence WKB, wave-action kinetics ....are valid.

BUT, in nonlinear phase dynamics
|o,lnw| > |w| andl/or |0.Ink| > |k]|.

So:
(a) the dynamical property of the concerned system may change, qualitatively ;

(b) new paradigm of coherent structure formation.

2. Rethinking wave-particle interaction from the viewpoint of phase couplings
among particles

Example:
Fourier

) 2
_ Vz ¢ — A1 qn, J fdv tl‘ﬂlleOl‘IIlﬁthl%

drgn

|| 1s an order parameter, describing the degree of synchronization
among the phases(6;(v)) of different particles

] % = Jm ey



Perspective on Relaxation: A Tale of Two Taylors

- Many commonalities between magnetic and flow relaxation apparent

- Common weak point is limitation of mean field theory
- difficult to grapple with strong NL , non-Gaussian fluctuations

Magnetic (JB) Flow (Gl)
concept topology symmetry
process turbulent reconnection PV mixing
players tearing vagseess’ Alfven drift wave turbulence

mean field EMF = (% x B) PV Flux =(0-4)
constraint [ d*zA - B conservation Potential Enstrophy
: balance
NL Helicity Density Flux Pseudomomentum Flux
outcome B-profiles zonal flow




« MFE theory has benefited greatly from long term interaction

with GFD, AFD communities

* Focus on paradigmatic problems has been productive:

Brute force parameter pushing, computation not so.

e Should continue focused C-D interaction in age of ITER,

CFETR, SciDAC, etc.!
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